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Note on the stability of plane parallel flows 
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The subject of this note is the behaviour of three-dimensional small disturbances 
to plane parallel flows, which have a variation in the direction normal to the 
plane of mean flow, in relation to two-dimensional disturbances which vary in 
the plane of mean flow only. It was pointed out by Squire (1933) that, in 
linearized theory, the disturbancewhichisneutrallystable at the criticalReynolds 
number R, is two-dimensional in form. More recently interest has turned to the 
question as to  which kind of disturbance is most rapidly amplified at a given 
Reynolds number above the critical. Jungclaus (1957) pointed out that for 
certain values of R and of the resolved wavelength in the plane of mean flow, 
three-dimensional disturbances may be more unstable than plane ones. Recently, 
Watson (1960) has shown further that a two-dimensional disturbance is the one 
most rapidly amplified in a certain range of R starting from the critical. In  thi8 
note we take a slightly different view of the problem which enables us to define 
specifically the upper end of this range of R, when it exists. 

It is clear that when a disturbance consists partly of Fourier components 
which are propagated obliquely to the plane of the mean motion, each such com- 
ponent interacts only with that component of the mean flow in the direction of 
propagation of the disturbance. We can illustrate this mathematically by 
choosing a frame of reference which makes sl disturbance in any given direction 
two-dimensional, say a function of x and y, but not of z. In  this frame of reference 
the mean flow will have a component in the z-direction. If we adopt this point of 
view and consider the disturbance to a plane parallel incompressible flow bounded 
by planes y = const., we can compute the linearized disturbance equations in 
which the mean velocities (U(y),O, W(y)) are disturbed to (U + u, v, W + w), 
and in which the small disturbance terms are independent of z, and vary with x 
and t like eia(z-ci). In  the standard notation the linearized equations for the 
disturbance are 

dU 
ia(U-c)u+v- = 

dW 

dv 
iau+-- = 0. 

dY 
t Now at Department of Mathematics, University College London, W.C. 1. 
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We see that equations (l), (2) and (4) are not coupled to (3), and with suitable 
boundary conditions on u and v they provide the characteristic value problem 
with U(y) the operative component of mean flow. W(y) is only used subsequently 
in (3), which, when w is established, is an inhomogeneous equation to solve for 
w with its independent boundary conditions. We may conclude that for a dis- 
turbance of wave number a propagated at an angle q5 to the plane of a mean flow 
with Reynolds number R, the behaviour is that of a two-dimensional disturbance 
of wave-number a and reduced Reynolds number Rcosq5. If we know the 
characteristic curves of constant c,, where c = c, + ici, in the (a, R)-plane, for 
two-dimensional disturbances of a given velocity profile, this enables us to deduce 
results simply for three-dimensional disturbances. 

It is important in comparing rates of amplification that we should have a 
correct measure of the amplification rate for different values of a and R. Results 
of stability calculations are usually given by a plot of curves of constant c,, in 
the (a, R)-plane, after these quantities have been made dimensionless. The 
dimensionless time amplification exponent is ac,, but the physical exponent is 
(‘v/L) ac,, where V and L are the representative velocity and length employed, 
respectively. Normally we think of varying R for a given fluid by changing V 
with L fixed. In  this case we have to take account of the variation of V in our 
comparisons by writing the time exponent (v/L2) (ac,R). With Y the kinematic 
viscosity and L fixed, it is clear that a correct dimensionless measure of the time 
amplification is ac, R. If we were to keep ‘v constant and vary L then the meaaure 
would be ac,/R, but for the purpose of comparing growth rates of two- and three- 
dimensional disturbances in a given apparatus the former case is the relevant 
one here. 

If we continue the discussion in terms of the curves actR = const. in the (a, R)- 
plane (where a and ci are now regarded as dimensionless) the point to decide is 
whether ac, R has a maximum as a function of a and R; if it  has, some of the 
curves form closed loops about the stationary point. If we assume this behaviour 
the curves will be of the form given in figure 1, with L the stationary point, at 
Reynolds number R,. (The stationary point L may be accompanied by another 
stationary point at a larger value of R depending on how a and ci behave as 
R --f 03. Such a point will be a saddle point if R --f 00 and aR --f CCI for ci > E: > 0.) 

If we construct an ordinate MM’ at the Reynolds number of the mean flow, 
the curve through a point of this line, for given a, describes the amplification of 
a two-dimensional disturbance of that wave-number. All points in the semi- 
infinite rectangle M’MOa can be reached by three-dimensional disturbances. 
Whether a two- or three-dimensional disturbance grows fastest will depend on 
whether all Characteristic (ac{R)-lines in the rectangle cut MM‘. There will be 
two distinct cases depending on whether the Reynolds number of the mean flow 
is greater or less than RL. If the ordinate is MIMi say, then the disturbance of 
most rapid growth is a plane one at the wave-number at which MIN; is a tangent 
to a characteristic (ac,R)-curve. The amplification associated with this curve is 
greater than at all points inside the rectangle. Hence for R, < R < R, a plane 
disturbance is amplified fastest. On the other hand, if we have the ordinate 
M2M;1, there will be a family of closed characteristic curves enclosing L which 
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do not intersect M,M; and which provide a higher growth rate than at any point 
of the line M2ML. Hence for R > RL a three-dimensional disturbance grows 
fastest. It may be noted that whereas the maximum amplification rate increases 
monotonically with R from R, to RL, it is constant thereafter, for R > R,, at 
least up to the next stationary point. In  cases where ac, R does not have a maxi- 
mum point L we shall know that two-dimensional disturbances will always 
grow fastest. 

Following Watson, we have considered the particular case of plane Poiseuille 
flow in more detail on the basis of the c,-curves given by Shen (1954; see also 
Lin 1955, chap. 3). Figure 2 gives a set of curves ac,R = const. obtained by inter- 
polation from Shen’s curves (the other details of the figure are explained below). 

--c 
0 R, I RL 4 R 

FIGURE 1. Sketch of e w e s  ac,R = const. 

The form of these curves suggests that there is no stationary point L in the 
range of the Reynolds number covered by the curves, i.e. up to approximately 
lo6. This conclusion is in agreement with Watson’s conjecture that two-dimen- 
sional disturbances grow most rapidly at all values of R. 

If we consider Jungclaus’s problem in which the resolved component of the 
wave-number in the plane of mean flow is fixed, the class of disturbance is more 
restricted. If the resolved wave-number is denoted by p, then the values of a 
and R for the equivalent plane disturbance are psec $ and R cos q5 respectively. 
Hence in the (a, R)-plane of figure 1, the locus of three-dimensional disturbances 
is a branch of a rectangular hyperbola for each pair of values of p and R. In  this 
case, since aR  is constant, we can compare amplification rates for different points 
on any particular hyperbola from the c,-curves directly, but if we wish to com- 
pare points on different hyperbolas the (ac, R)-curves should be used. 

Figure 2 also shows a set of curves aR = const. superposed on the (ac,R)- 
curves for plane Poiseuille flow. 
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The line of interest here is PQ, which is the locus of points at which the (&)- 
curves are tangential to the (ac,R)-curves. If PX is the (&)-curve which is 
tangential to the marginal stability curve PT, on which ac,R = 0, then it is 
clear that for values of /3 and R chosen in this plane between P Q  and PX there are 
three-dimensional disturbances which are more rapidly amplified than two- 

FIGURE 3 

FIGURE 2. Curves ac,R = const. and aR=const. (e.g. the curve PS) for plane 
PoiseuiIIe flow. 

dimensional ones. We also note finally that for values of p and R taken between 
PS and PT, the plane disturbance, and three-dimensional ones up to a certain 
value of q5, are stable. 
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